

Printed Pages: 1

Paper Id: 2 3 1 2 1 0

Sub Code:MTEC 202

Roll No.

M.TECH. (SEM-II) THEORY EXAMINATION 2017-18 DETECTION AND ESTIMATION THEORY

Time: 3 Hours Total Marks: 70

Note: Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 7 = 14$

- a. Discuss nonlinear minimum mean squared error estimators.
- b. What is an estimator? List important properties of estimators.
- c. Explain the power special density functions.
- d. Draw & explain hypothesis testing in brief.
- e. Distinguish between Point Processes and Gaussian processes.
- f. What do you understand by "linear model" in estimation.
- g. Write the application of orthogonality principles in communication engineering.

SECTION B

2. Attempt any three of the following:

 $7 \times 3 = 21$

- a. List important properties of estimators. What do you understand by "Discrete linear model" in estimation?
- b. What is the significance of nonparametric estimators of probability distribution? Explain.
- c. What are the applications of Kalman Filters?
- d. List the properties of Probability Distribution Functions
- e. Explain the Neymen-Pearson criterion for radar detection of constant amplitude signal

SECTION C

3. Attempt any *one* part of the following:

 $7 \times 1 = 7$

- (a) Discuss briefly what you understand by composite Hypothesis testing.
- (b) Derive the likelihood ratio test (LRT), under the Neyman Pearson (NP) criterion for a binary hypothesis problem.

4. Attempt any *one* part of the following:

 $7 \times 1 = 7$

- (a) Explain model-based estimation of autocorrelation functions.
- (b) Write the procedures for the detection of signals with random parameters.

5. Attempt any *one* part of the following:

 $7 \times 1 = 7$

- (a) Discuss the performance evaluation of signal detection procedures.
- (b) With neat sketch explain kalman filters and its mathematical analysis.

6. Attempt any *one* part of the following:

 $7 \times 1 = 7$

- (a) Prove that for simple binary hypothesis tests the slope of a curve in a ROC at a particular point is equal to the value of threshold n required to achieve the PD and PF of the point.
- (b) What are the applications of Digital Wiener Filters?

7. Attempt any *one* part of the following:

 $7 \times 1 = 7$

- (a) Define the likelihood function and explain the method of Maximum Likelihood(ML) estimation.
- (b) Explain joint MAP estimates in additive white Gaussian noise channel.