

Printed Pages: 2

Paper Id: 1 1 0 6 0 5

Sub Code: ECS 505

Roll No.

B. TECH. (SEM. VI) EVEN SEMESTER THEORY EXAMINATION 2017-18 GRAPH THEORY

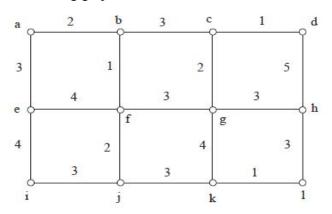
Time: 3 Hours Total Marks: 100

Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 10 = 20$


- a. Define Euler graph.
- b. Can there is a path longer than Hamiltonian path (if any) in simple connected undirected graph? Why?
- c. Define walk and path in a graph.
- d. What is an edge covering?
- e. What are the applications of a planer graph?
- f. Find the chromatic number of a complete graph of n vertices.
- g. Define recurrence relation.
- h. What is spanning tree?
- i. Define 1-isomorphic and 2-isomorphic.
- j. What is proper coloring?

SECTION B

2. Attempt any three of the following:

 $10 \times 3 = 30$

- a. Define the Hamiltonian graph. Give two example of Hamiltonian graph.
- b. Discuss about some types of digraph with suitable example.
- c. Define the thickness and cross number of a graph. Show, by sketching, that the thickness of the eight vertex complete graph is two, whereas that of the nine vertex complete graph is three.
- d. What is it meant by the basis Vectors of a graph? Explain with an example.
- e. Use the algorithm of Prim's or Kruskal's, to find a minimum spanning tree of the following graph:

3. Attempt any *one* part of the following:

 $10 \times 1 = 10$

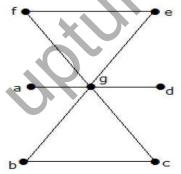
- (a) Describe the steps to find adjacency matrix and incidence matrix for a directed graph with a suitable example.
- (b) Write a note on chromatic polynomial and their applications.

4. Attempt any *one* part of the following:

 $10 \times 1 = 10$

- (a) What do you mean by the rank and nullity of a graph? Discuss the rank and nullity of a complete graph of n vertices.
- (b) Prove that in a binary tree having n vertices the minimum height is [log2 (n+1)-1].

5. Attempt any *one* part of the following:


 $10 \times 1 = 10$

- (a) Define the edge-connectivity and vertex connectivity of a graph. Prove that the vertex connectivity of any graph G never exceed the edge connectivity of G.
- (b) What is a geometrical dual and combinational dual graph? Show that a graph has a dual if and only if it is a planner.

6. Attempt any *one* part of the following:

 $10 \times 1 = 10$

- (a) Suppose G and G' are two graphs having n vertices. For what values of n is it possible for G to have more components and edges than G'?
- (b) Define the chromatic number and chromatic polynomial of a graph. Find the line covering number for the following graph?

7. Attempt any *one* part of the following:

 $10 \times 1 = 10$

- (a) Explain the diameter and radius of a tree with example. Find the condition under which the diameter of a tree is equal to twice the radius.
- (b) Define:
 - (i) Cut-set matrix
 - (ii) Fundamental cut-set matrix.

Give example of each.