

Printed Pages: 02 Sub Code: NEC043

Paper Id: 131823 Roll No.

B. TECH (SEM VIII) THEORY EXAMINATION 2017-18 SPEECH PROCESSING

Time: 3 Hours Total Marks: 100

Note: 1. Attempt all Sections.

2. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 10 = 20$

- a. What is a phoneme?
- b. Define a speech signal?
- c. Define short time energy and zero crossing rate.
- d. What is AMDF?
- e. Define pitch detection.
- f. What are vocoders?
- g. Explain homomorphic system.
- h. Explain the concept of complex cepstrum of speech.
- i. Write the basic principle of linear predictive coding of speech.
- j. Differentiate between convolution and deconvolution of speech.

SECTION B

2. Attempt any *three* of the following:

 $10 \times 3 = 30$

- (a) With a schematic diagram of vocal apparatus, explain the mechanism of speech production and identify the source system components. Also explain the classification of speech sound according to mode of excitation.
- (b) With the help of block diagram explain the operation of the simple pitch period estimators. Also list the limitations of short time zero crossing detector.
- (c) Explain the linear filter operation of a short time spectrum analysis with the help of a block diagram. Also discuss the magnitude of the short time spectrum using both low pass filter and band pass filter.
- (d) Write the properties of complex cepstrum of a stable sequence. Also explain the homomorphic system for convolution with the help of a block diagram.
- (e) Discuss the significance of LPC in speech synthesis system. Also derive an expression for linear predictor coefficients.

SECTION C

3. Attempt any *one* part of the following:

 $10 \times 1 = 10$

- (a) What are the different types of phonemes in American English? Explain with at least one example in each case.
- (b) Define nasals. How they are produced? What are the reasons for broadening of nasal resonances?

4. Attempt any *one* part of the following:

 $10 \times 1 = 10$

- (a) With the help of a block diagram and mathematical analysis explain how short time energy and average magnitude of speech signal is computed.
- (b) What are the factors which have to be considered in automatic recognition of isolation during speech versus silence discrimination? Elaborate with two examples.

5. Attempt any *one* part of the following:

 $10 \times 1 = 10$

- (a) Describe filter bank summation method of short time synthesis in signal in terms of linear filtering.
- (b) Define short time Fourier transform. Also explain the Fourier transform interpretation of short time Fourier transform.

6. Attempt any *one* part of the following:

 $10 \times 1 = 10$

- (a) With the help of a block diagram explain homomorphic vocoder containing analyzer and synthesizer.
- (b) Explain parallel processing time domain pitch detection. Also explain homomorphic deconvolution of speech signal.

7. Attempt any *one* part of the following:

 $10 \times 1 = 10$

- (a) Discuss the frequency domain interpretation of mean squared prediction error of a loss less tube model. Also describe the relations between various speech parameters.
- (b) Write notes on the following
- (i) Normalized mean square error
- (ii) Applications of LPC parameters
- (iii) Linear predictive coding