Printed Pages: 4

NEC-404

(Following Paper ID and Roll No. to be filled in your Answer Books)

Paper ID: 131407

B.TECH.

Theory Examination (Semester-IV) 2015-16

ELECTROMAGNETIC FIELD THEORY (EMFT)

Time: 3 Hours Max. Marks: 100

Section-A

- Q1. Attempt all parts. All carry equal marks. Write answer of each part in short. (10×2=20)
 - (a) Find shape intersection surface where p=2, z=1 intersect each other.
 - (b) Define and derive divergence theorem for a vector.
 - (c) State point form of ohms law & Gauss's Law.
 - (d) Find electric field density for infinite line charge using Gauss's law.
 - (e) Explain Biot-Savart's Law.

P.T.O.

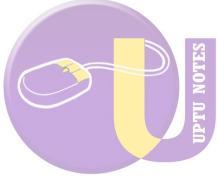
- (f) Write difference between magnetic and electric dipole.
- (g) Define reflection coefficient of a plane wave at normal incidence.
- (h) Explain the significance of loss tangent.
- (i) Mention the properties of uniform plane wave.
- (j) Define Laplace's equation for electric field.

Section-B

Q2. Attempt any five questions from this section.

 $(10 \times 5 = 50)$

- (a) Transform vector $A = y\hat{a}_x + (x + z)\hat{a}_y$ it into spherical coordinates system. Also evaluate it's value at P(-2, 6, 3).
- (b) Find expression for electric field intensity for an infinite sheet charge.
- (c) Define and derive Laplace's equation for electric field.
- (d) Discuss Polarization in dielectric medium.


- (e) Three point charges- 1nC, 4nC, 3nC are located at (0,0,0), (0,0,1), (1,0,0) find energy in the system.
- (f) Derive continuity current equation. Also define relaxation time.
- (g) Prove that magneto static energy is given by $W_m = \frac{1}{2} \int_V \varepsilon H^2 dv.$
- (h) What do you mean by displacement current also derive Ampere's law for time varying field.

Note: Attempt any two questions from this section. $(15\times2=30)$

Section-C

- Q3. State and prove divergence theorem. Determine the flux over the closed surface of cylinder 0 < z < 1, p=4 if $D=p^2 \cos 2$ $(\varphi) \hat{a}_p + z \sin \varphi \hat{a}_{\varphi}$. Verify the divergence theorem for above mentioned case
- Q4. (i) Write down Maxwell's equation in all forms for static, dynamic and time harmonic fields with their significance.

- (ii) Calculate electric field intensity due to continuous infinitely long sheet charge having line charge density $p_s C/m^2$.
- Q5. State and prove boundary condition at interfaces for magneto static fields. Given that H1 = -2 $\hat{a}_x + 6 \hat{a}_y + 4 \hat{a}_x A/m$ in region y-x-2<0 where μ 1=5 μ 0 calculate
 - (a) M1,B1
 - (b) H2 and B2 in region y-x-2>0 where μ 2=2 μ ₀.

