(Following Paper ID and Roll No. to be filled in your Answer Books)

Paper ID: 131408

Roll No.

B.TECH.

Theory Examination (Semester-IV) 2015-16

INFORMATION THEORY AND CODING

Time: 3 Hours Max. Mar: 100

Note: Attempt questions from all Sections as per directions.

Section-A

- Q1. Attempt all parts of this section. Answer in brief. $(2\times10=20)$
 - (a) Derive the relation between conditional and joint entropies.
 - (b) What is DMC? Explain its significance.
 - (c) Give difference between digital audio and audio compression.
 - (d) Briefly explain Run Length Encoding (RLE). State its examples.
 - (e) Compare and contrast Huffman coding and arithmetic coding.

1 (1) P.T.O.

- (f) If C is a valid code vector, then prove that $CH^{T} = 0$ where H^{T} is transpose of parity check matrix H.
- (g) Explain in brief the Golay code.
- (h) State the limitations of sequential decoding.
- (i) What is ARQ? State its types.
- (j) Differentiate among Code rate, Constraint length and Code dimension.

Section-B

Attempt any five questions from this section. $(10 \times 5 = 50)$

- Q2. Prove that the upper bound on the value of entropy H of a source is logs M, where M is the number of symbols.
- Q3. For a discrete memory less source there are three symbols with probabilities $p_1 = \alpha$ and $p2 = p_3$. Determine the entropy of the source and sketch its variation for different values of α .
- Q4. Define and explain the term information rate. State the relation between information rate and entropy.
- Q5. Design a syndrome calculator for a (7, 4) cyclic Hamming code generated by the polynomial G(p) = p3 + p + 1. Calculate the syndrome for $Y = (1 \ 0 \ 0 \ 1 \ 1 \ 0 \ 1)$.
- Q6. State and explain source coding theorem. What is coding efficiency?

Q7. A channel has the following channel matrix.?

$$[P (Y/X)] = \begin{pmatrix} 1-p & p & 0 \\ 0 & p & 1-p \end{pmatrix}$$

- (i) Draw the channel diagram.
- (ii) If the source has equally like outputs. Compute the probabilities associated with the channel output for p=0.2.
- Q8. Determine For the given code shown in figure 1 obtain the convolution code for the bit sequence 1 1 0 1 1 0 1 1 and decode it by constructing the corresponding code tree.

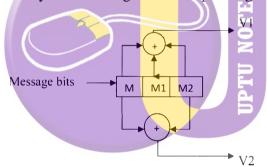


Fig.1

Q9. Explain VRC and LRC techniques. Define minimum distance dmm and explain its role in detecting and correcting errors.

Section-C

Attempt any two questions from this section. $(15\times2=30)$

Q10. With the following symbol and their probability of occurrence, encode the message "wentffusing arithmetic coding algorithms.

Symbol	e	n	W	t	' #'
Probability	0.3	0.3	0.1	0.1	0.1

Fig-3

Q11. For the joint probability matrix (JPM) shown below, H(X,Y), H(X), H(Y), H(X/Y) and H(Y/X)

Q12. How do you obtain the generator polynomial for the cyclic code? Check if the following codes are cyclic or not