(Following Paper ID and Roll No. to be filled in your Answer Books)

PAPER ID :
Roll No.

B.TECH.

Theory Examination (Semester-IV) 2015-16

SIGNALS \& SYSTEMS

Time : 3 Hours
Max. Marks : 100

SECTION - A

Q1. Attempt all parts
$10 \times 2=20$
a) Distinguish between Symmetric and Non-Symmetric signals with suitable example.
b) Determine whether the following signal is periodic or not, if so find its period.

$$
x(t)=\cos t+\sin \sqrt{2 t}
$$

c) Explain BIBO and Time Invariance properties of the system.
d) Prove the frequency-shifting property of Fourier Transform.
e) Find the Nyquist-rate for the following signal.

$$
\begin{aligned}
& x(t)=[1+0.1 \sin (200 \pi t)] \cos (2000 \pi t)]
\end{aligned}
$$

f) Sketch
g) What do you mean by Group Delay?
h) Establish the relationship between convolution and correlation function for CT - system.
i) Find the total energy and total-power contained in the unit-step signalu(t).
j) Find the impulse-response of the system having gain.

Q2. Attempt any five parts

SECTION - B

a) An LTI system has impulse response $h(n)=[u(n)-u(n-4)]$. Find the output of the system if the input $x(n)=[u(n+10)-2 u(n+5)+(n-6)]$. Sketch the output.
b) Use the properties of the Fourier Transform to show by induction that the Fourier Transform of

$$
x(t)=\frac{t^{n-1}}{(n-1)!} e^{-a t} u(t), a>0 \quad \text { is } \quad \frac{1}{(a+j w)^{n}}
$$

c) Show that the Fourier Transform of a train of impulses of unit height separated by T secs is also a train of impulses of height $\omega_{0}=2 \pi / \mathrm{T}$ separated by $\omega_{0}=2 \pi / \mathrm{T}$ sec.
d) Determine the DTFT of the following signals
i. $\quad x(n)=a^{|n-2|},|a|<1$
ii. $\quad x(n)=\left(\frac{1}{2}\right)^{n} u(n-2)$
iii. $\quad x(n)=2^{n}[u(n)-u(n-6)]$
e) Attempt the following

ii. State and Prove initial" value theorem for Z - Transform.
f) Explain causal and anti-causal signals with suitable examples.
g) Sketch $\delta[\mathrm{n}]=\mathrm{u}(\mathrm{n})-\mathrm{u}(\mathrm{n}-1)$
h) Derive the expression for convolution integral.

SECTION - C

Attempt any two parts

$$
15 \times 2=30
$$

Q3. Attempt the following.
a) Evaluate the continuous time convolution integral

$$
y(t)=e^{-2 t} u(t) * U(t+2)
$$

b) Determine whether each of the systems given below is linear, time invariant, causal and memory.
i. $\quad y(t)=\cos (x(t))$
ii. $\quad y(n)=2 x(n) u(n)$
iii. $\quad y(t)=\frac{d}{d t}\left\{e^{-t} x(t)\right\}$

Q4. Attempt the following.
a) Explain the following properties of the Laplace Transform
i. Linearity.
ii. Time - Shifting.
iii. Time - Scaling.
iv. Conjugation.
b) Determine the unilateral Laplace Transform of each of the following signals, and specify the corresponding regions of convergence.
i. $\quad x(t)=e^{-2 t} u(t+1)$
ii. $\quad x(t)=\delta(t+1)+\delta(t)+e^{-2(t+3)} u(t+1)$
iii. $\quad x(t)=e^{-2 t} u(t)+e^{-4 t} u(t)$

Q5. Attempt any two of the following.
a) Draw a block representation for the causal LTI system with system function

b) Explain uni-lateral Z-Transform.
c) Find the step-response of the RC - High Pass Filter.

WWW.UPTUNOTES.COM

