Printed Pages: 6

EEE011

(Following Paper ID and Roll No. to be filled in your Answer Book) PAPER ID: 121655											
Roll No.											

B. Tech.

(SEM. VI) THEORY EXAMINATION, 2014-15 DIGITAL CONTROL SYSTEM

Time: 3 Hours [Total Marks: 100]

Note: Attempt all questions.

- Attempt any four parts of the following: $5\times4=20$
 - (a) Draw the basic digital control system and explain the function of each block. Also discuss the sampling effects.
 - (b) Define an ideal sampler. Also explain the relationship between Z-transform and Laplace transform.
 - (c) Predict the nature of the transient response of a discretetime system whose characteristic equation is given by

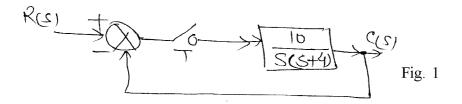
$$Z^2 - 1.9Z + 0.9307 = 0$$

The sampling interval T = 0.02 sec.

121655] 1 [Contd... www.uptunotes.com

(d) Obtain the companion first form realizations for the transfer function

$$\frac{Y(z)}{R(z)} = \frac{4z^3 - 12z^2 + 13z - 7}{(z-1)^2(z-2)}$$


- (e) Explain the suitable method for the stability of a discrete time system. Also explain the bilinear transformation.
- (f) What do you understand by performance measure? Explain in view of optimal control problems.
- 2 Attempt any two parts of the following: 10×2=20
 - (a) (i) If Z[f(t)] = F(z), then prove that

$$Z\lceil f(t+T)\rceil = Z\lceil F(z) - f(0)\rceil$$
 where

$$F(0) = f(0)$$

(ii) Find
$$z^{-1} \left[\frac{z}{3z^2 - 4z + 1} \right]$$

(b) (i) Determine the pulse transfer function of ther system shown in Fig.1

(ii) Solve the following difference equation:

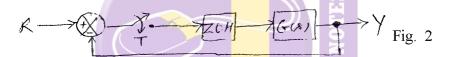
$$y(k+2)+3y(k+1)+2y(k)=0$$

 $y(-1)=-\frac{1}{2}, y(-2)=\frac{3}{4}$

(c) Consider the difference equation

$$y(k+2) + a_1 y(k+1) + a_2 y(k) = b_0 r(k+2)$$

+ $b_1 r(k+1) + b_2 r(k)$


Assuming that the system is initially at rest, and r(k) = 0 for k < 0, obtain the transfer function $G(z) = \frac{Y(z)}{R(z)}$.

121655] 3 [Contd... www.uptunotes.com

- (a) Discuss the transient and frequency domain specification that describe the performance of feedback control system in Z-plane.
- (b) A sampled data feedback control system is shown in fig. 2. The controlled process of the system is described by the transfer function

$$G(s) = \frac{k}{s(s+1)}$$
; $0 \le k < \infty$

The sampling time period T = 1 sec.

Sketch the root locus plot for the system on the Z-plane and from there obtain the value of 'k' that results in marginal stability.

(c) Investigate the controllability and observability of the following system:

$$X(k+1) = \begin{bmatrix} 1 & -2 \\ 1 & -1 \end{bmatrix} X(k) + \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} u(k)$$

$$Y(k) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} X(k)$$

www.uptunotes.com

- 4 Attempt any two parts of the following: $10\times2=20$
 - (a) Explain various methods available to investigate the controllability and observability.
 - (b) A discrete time regulator system has the plant

$$X(k+1) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -4 & -2 & -1 \end{bmatrix} X(k) + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u(k)$$

Design a state feedback controller which will place the closed loop poles at $-\frac{1}{2} \pm j \frac{1}{2}$, 0. Also give a block diagram of the control configuration.

(c) State and explain Lyapunov stability criterion in brief.

For the system

$$X_1(k+1) = 2X_1(k) + 0.5X_2(k) - 5$$

 $X_2(k+1) = 0.8 X_2(k) + 2$

Investigate the stability of the equilibrium state. Use the direct method of Lyapunov.

121655] 5 [Contd... www.uptunotes.com

(a) Using the Lyapunov's direct method, find the stability range for the gain 'K' of the system shown in Fig.3

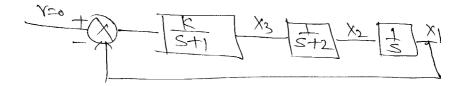


Fig. 3

(b) Determine the optimal control law for the system

$$\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} X + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$

$$Y = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} X$$

Such that the following performance index is minimized.

$$J = \int_0^\infty \left(y_1^2 + y_2^2 + u^2 \right) dt$$

- (c) Write short notes on any two of the following:
 - (i) Principle of optimality
 - (ii) Infinite regulator problem
 - (iii) Compensator design.

www.uptunotes.com [475]