(b) Predict the hybridization and shape of the following compounds on the basis of VSEPR theory: SO₂, PCl₅, NH₃ and XeO₄.

6. Attempt any **one** part of the following:

- (a) Differentiate between Enantiomers and Diastereoisomers. Which of the following compounds are optically active and why? Allenes, n-butanol, n-propanol and 2-chlorobutane.
- (b) With the help of data given show that decomposition of H₂O₂ in aqueous solution is of first order.

Time (min.)

0

20

30

Volume of KM_nO₄ required

to decompose H₂O₂ (ml)

: 12.5 25.0 20.0 15.7

10

- 7. Attempt any **one** part of the following:
 - (a) (i) Explain why an underground iron pipe is connected through an insulated wire to a block of zinc metal.
 - (ii) A compound having molecular formula $C_{10}H_{14}$ gave the following set of ¹H NMR data: δ 7.10 (5H, singlet), δ 2.44 (2H, doublet), δ 1.88 (1 H, multiplet), δ 0.86 (6H, doublet). Assign the structure to this compound giving explanation.
 - (b) (i) Show how does S_N^2 reaction gives rise to inverted product. Discuss the energy profile of such a reaction.
 - (ii) An edge of cubic cell of NaCl crystal is 6.5×10^{-8} cm. Assuming that four molecules of NaCl are associated per unit cell, calculate its density. (Avogadro's number = 6.023×10^{23}).

Printed Pages—4

EAS102

Following Paper ID and Roll No. to be filled in your Answer Book)											
PAPER ID : 9603	Roll No.										

B.Tech.

(SEM. I) ODD SEMESTER THEORY EXAMINATION 2012-13 ENGINEERING CHEMISTRY

Time: 3 Hours Total Marks: 100

Note: Attempt all questions. All questions carry equal marks.

SECTION—A

1. Attempt all ten parts. Each part carries equal marks.

 $(10 \times 2 = 20)$

- (i) Explain why Teflon is highly chemical resistant.
- (ii) Low density and high density polythene differ in density. Why?
- (iii) 3.12 g of coal was kjeldahlized and NH₃ gas thus evolved was absorbed in 50 ml of 0.1 N H₂SO₄. After absorption, the excess of acid required 12.5 ml of 0.1 N NaOH for neutralization. Calculate the % age of nitrogen in given coal sample.
- (iv) Giving example differentiate between intra- and inter molecular hydrogen bondings.
- (v) Calculate the number of atoms per unit cell in SC, BCC and FCC.
- (vi) Arrange the following molecules/ions in order of their increasing bond length; O_2 , O_2^{1-} , O_2^{2-} .
- (vii) Write down the chemical unit of Nylon and Polystyrene.
- (viii) Explain why methyl amine is a stronger base than ammonia.

www.uptunotes.com

- (ix) Why is TMS used as a standard reference in NMR spectroscopy?
- (x) Why can human beings digest starch but not cellulose although both are made up of D(+) glucose?

SECTION—B

- 2. Attempt any **three** parts of the following : $(3\times10=30)$
 - (a) (i) With the help of molecular orbital diagram, explain why hydrogen forms diatomic molecule, while helium remains monoatomic.
 - (ii) What is spin-spin coupling? Explain the NMR spectrum of CH₃ CH₂ OH molecule.
 - (b) (i) Describe the structure of Graphite. How it acts as conductor of electricity?
 - (ii) Describe preparation, properties and application of (i) Buna-S, (ii) Nylon 6,6.
 - (c) (i) Explain the order and stability of primary, secondary and tertiary carbocations.
 - (ii) How many NMR signals do you expect from each of the following compounds?
 - (i) CH₃CH₂CH₂Br, (ii) CH₃OCH₃.
 - (d) (i) Calculate the NCV and GCV of coal having the following compositions; C = 85%, H = 8%, S = 1%, N = 2% and ash = 4%. (Latent heat of water vapour = 587 cal/g).
 - (ii) Explain Relative configuration. What are the drawbacks of this system of configuration assignment?
 - (e) (i) What is biogas? How biogas is produced? With the help of a diagram, explain the process of biogasification.
 - (ii) The specific rate constant for the decomposition of formic acid is $5.5 \times 10^{-4} \text{ sec}^{-1}$ at 413 K. Calculate the specific rate constant at 458 K if the energy of activation is $2.37 \times 10^4 \text{ cal mol}^{-1}$.

SECTION—C

Note : Attempt **all five** questions. Each question carries equal marks. $(5 \times 10 = 50)$

- 3. Attempt any **one** part of the following:
 - (a) (i) What are the organometallic compounds? Give the preparation and applications of Grignard reagent.
 - (ii) Explain sacrificial anodic and impressed cathodic protection method for prevention of corrosion.
 - (b) What do you mean by the term titrimetric analysis? How is the completion of reaction indicated in titrations? Discuss the titrimetric analysis of: NaOH against oxalic acid.
- 4. Attempt any **one** part of the following:
 - (a) Discuss the mechanism of Hoffmann rearrangement and Cannizzaro reaction.
 - (b) Define and explain the terms involved in phase rule. Draw a neat labeled phase diagram of water system and explain the areas and curves in it. What is the significance of the triple point and metastable curve in this system?
- 5. Attempt any **one** part of the following:
 - (a) Predict the number and draw all the possible stereoisomers for the following:

EAS102/DLT-44479

www.uptunotes.com