EAS-103

(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID : 199109

Roll No.					
----------	--	--	--	--	--

B. Tech.

(SEM. I) (ODD SEM.) THEORY EXAMINATION, 2014-15

MATHEMATICS - I

Time: 3 Hours] [Total Marks: 100

Note: Attempt all questions. All questions carry equal marks.

- 1 Attempt any two parts:
 - a) Find the nth derivative of $\frac{(2x+1)}{(2x-1)(2x+3)}$.
 - b) If $z = \log(e^x + e^y)$ then show that $rt s^{-2} = 0$ where $r = z_{xx}$, $t = z_{yy}$, $s = z_{xy}$. Symbols have their usual meanings.
 - c) Verify Euler's theorem for function $u = \log \left(\frac{x^4 + y^4}{x + y} \right)$.
- 2 Attempt any **TWO** parts of the following:
- a) Expand $\sin^{-1}\left(\frac{2x}{1+x^2}\right)$ in ascending powers of x.

 199109] 1 [Contd...

www.uptunotes.com

b) If u, v, w are roots of equation

$$(x-a)^3 + (x-b)^3 + (x-c)^3 = 0$$
 find $\frac{\partial (u,v,w)}{\partial (a,b,c)}$.

- c) Using Lagrange's method of Maxima and Minima find the shortest distance from the point (1, 2, -1) to sphere $x^2 + y^2 + z^2 = 24$.
- 3 Attempt any **TWO** parts of following:
 - a) Find the rank of matrix by reducing to Normal form

$$A = \begin{bmatrix} 1 & 2 & 1 & 0 \\ -2 & 4 & 3 & 0 \\ 1 & 0 & 2 & -8 \end{bmatrix}.$$

b) Find the eigen values of corresponding eigen vectors

of matrix
$$A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$$
.

c) If
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
, find A^{-1} and A^{4} using Caylay's

Hamilton's theorem.

- 4 Attempt any **TWO** parts of following:
 - a) Evaluate $\int_0^1 \int_0^1 \sin y^2 dy dx$ by changing the order of integration.

- b) Evaluate $\int_0^\infty \int_0^\infty e^{-(x^2+y^2)} dxdy$ by changing into polar coordinates.
- c) Prove that $\frac{\beta(p,q+1)}{q} = \frac{\beta(p+1,q)}{p} = \frac{\beta(p,q)}{p+q}$ (p>0,q>0).
- 5 Attempt any **TWO** of following:
 - a) Using Green's theorem, evaluate $\int_{c} (x^{2} + xy) dx + (x^{2} + y^{2}) dy \text{ where } c \text{ is square}$ formed by lines $x = \pm 1$, $y = \pm 1$.
 - b) Verify divergence theorem for $\vec{F} = x^3 \hat{i} y^3 \hat{j} + z^3 \hat{k}$ taken over surface of sphere $x^2 + y^2 + z^2 = a^2$.
 - c) If $\vec{F} = (x^2 + yz)\hat{i} + (y^2 + zx)\hat{j} + (z^2 + xy)\hat{k}$ find $div \vec{F}$ and $curl \vec{F}$.