(Following Paper ID and Roll No. to be filled in your Answer Books) Paper ID: 214405 Roll No.

M.C.A.

Theory Examination (Semester-IV) 2015-16

ADVANCE COMPUTER ARCHITECTURE

Time: 3 Hours Max. Marks: 100

Section-A

Note: Attempt all the parts. All parts carry equal marks. Write answer of each part in short. $(10 \times 2 = 20)$

- **1.** (a) Define state and cycle.
 - (b) What are the performance differences between write update and write invalidate protocols?
 - (c) What is Reliability, Availability and Dependability with reference to storage systems?
 - (d) Is n-cycle pipelining increases speed by n time? Justify your answer.

(1) P.T.O.

WWW.UPTUNOTES.COM

(e)	What are centralized shared memory architectures and
	symmetric shared memory multiprocessors?

- (f) What are the merits of MIMD multiprocessors?
- (g) Larger block sizes will reduce compulsory misses. Is the statement true or false? Justify you answer.
- (h) How data hazards can be minimized?
- (i) What is dynamic scheduling? Compare dynamic scheduling with static pipeline scheduling?
- (j) Define the terms: Cache, Cache hit and Cache miss. Miss rate and Miss penalty.

Section-B

2. Attempt any five questions from this section.

 $(5 \times 10 = 50)$

(a) Describe set-associative mapping scheme for cache memory.

- (b) Describe expression for performance, throughput, sopt and total instructions execution time for pipelining processing.
- (c) Discuss in detail various Interconnect architectures for MIMD computers.
- (d) What is Cache Coherence Problem? What is a snooping cache? Discuss with example the Write Through and Write Once protocols for Cache consistency.
- (e) What is multithreading and explain in detail about the types of multithreading.
- (f) Define parallel computing? What are the fundamental issues in parallel processing? Why parallel computing is required?
- (g) Write short notes on:
 - i. Condition compilation
 - ii. Master and synchronization constructions.

(h) Explain in detail about the various hit time reduction techniques.

Section-C

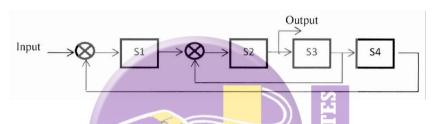
Note: Attempt any two questions from this section.

 $(2 \times 15 = 30)$

Analyse the data dependencies among the following statements:

S2: Load R2,
$$M(10)$$
 /R2 \leftarrow Memory(10)/

S3: Add R1, R2
$$/R1 \leftarrow (R1) + (R2)/$$


S4: Store M (1024), R1 /Memory (1024)
$$\leftarrow$$
 (R1)/

S4: Store M (R2), 1024 /Memory (64)
$$\leftarrow$$
 1024/

Note that (Ri) means that the content of register Ri and Memory (10) contains 64 initially.

Draw a dependence graph to show all the dependencies.

- ii. Are there any resource dependencies if only one copy of each functional unitis available in the CPU?
- 4. Consider the following pipelined processor with four stages. This pipeline has a total evaluation time of six clock cycles. All successor stages must be used after each clock cycle.

- i. Specify the reservation table for this pipeline with six columns and four rows?
- ii. List the set of forbidden latencies between task initiations.
- iii. Draw the state diagram which shows all possible latency cycles.
- iv. List all greedy cycles from the state diagram.
- v. Determine the minimal average latency (MAL).

5. Explain how instruction set compiler technology CPU implementation & control and memory hierarchy effect the CPU performance. Justify the effects in terms of program length, clock rate and effective CPI.

