(Following Paper ID and Roll No. to be filled in your Answer Books)
Paper ID : 293210
Roll No. $\square \square|\square| \square \square|\mid \square \square$

M.A.M.

Theory Examination (Semester-VI) 2015-16

BUSINESS STATISTICS

Time : 3 Hours
Max. Marks : 100

Note: Attempt questions from all sections as per directions. The figures in the right margin indicate marks.

1. Attempt all parts.

Section- A

(a) What do you mean by measures of central tendency?
(b) What is LPP?
(c) What is the meaning of operation research?
(d) What is correlation?
(e) What is the meaning of partition values?
(f) What do you mean by quartile deviation?
(g) Write down the suitable formula for the following condition:-

When calculated value of mode does not lie in the modal class.
(h) What do you mean by transportation problem?
(i) What do you mean by range?
(j) What are the methods of collecting primary data?

Section- B

Note:- Attempt any five questions of the following:
$(10 \times 5=50)$
(a) Define statistics and discuss in brief its nature \& scope.
(b) Goals scored by two teams A and B in a foot ball season were as follows:

No. of Goals	No. of Matches	
(scored in a match)	A	B
0	27	17
1	9	9
2	8	6
3	5	5
4	4	3

(2)

By calculating the coefficient of variation in each case, find which team may be considered more consistent.
(c) Calculate coefficient of correlation between X and Y by the method of rank differences: -

$\mathrm{X}:$	48	33	40	9	16	16	65	24	16	57
$\mathrm{Y}:$	13	13	24	6	15	4	20	9	6	19

(d) A paper mill produces two grades of paper namely X and Y . owing to raw material restrictions; it cannot produce more than 400 tones of grade X and 300 tones of grade Y in a week. There are 160 production hours in a week. It requires 0.2 and 0.4 hours to produce a ton of products X and Y , respectively with corresponding profits of Rs. 200 and Rs. 500 per ton. Formulate the above as an LPP to maximize profit and fit the optimum product mix.
(e) Obtain the dual of the following LPP:-

$$
\operatorname{Min} z=2 x_{2}+5 x_{3}
$$

Subject to the constraints,

$$
\begin{aligned}
& x_{1}+x_{2} \geq 2 \\
& 2 x_{1}+x_{2}+6 x_{3} \leq 6
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}-x_{2}+3 x_{3}=4 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

(f) For two firms A and B , the following details are available :

	A	B
Number of employees	100	150
Average salary (Rs.) Standard deviation of salary (Rs.) 16000	18000	

(i) Which firm pays large package of salary?
(ii) What is the combined average salary?
(iii) In which firm A or B is there greater variability in individual wages?
(g) Find out the A.M. from the following data:
Class/Size
2
3
4
5-7
7-10
5

$10-15$	10
$15-20$	8
$20-25$	4

(h) Calculate the mean from the following table:-

Salary (Rs.)	Freque
Below 50	30
Below 70	46
Below 100	65
Below 110	85
Below 120	95
Above 120	5
Section- C	

Attempt any two parts of the following:-
$(15 \times 2=30)$
3. Find out the optimal solution of the following T.P. :-

	I	II	III	IV	V	Availability
I	5	8	6	6	3	8
II	4	7	7	6	5	5
III	8	4	6	6	4	9
ement	4	4	5	4	8	
(5)						P.T.O.

4. From the following table, calculate the Karl Pearson's coefficient of correlation between age of husbands and wives:

Age of Wives (Years)	Age of Husbands (Years)					
	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	Total
$55-65$	-	-	-	4	2	6
$45-55$	-	-	4	16	5	25
$35-45$	-	1	12	2	-	15
$25-35$	-	10	25	2	-	37
$15-25$	5	9	3	-	-	17
	5	20	44	24	7	100

5. Write down the algorithm of simplex method for solution of a linear programming problem®

(8)
