(Following Paper ID and Roll No. to be filled in your Answer Books)

Paper ID: 151407

Roll No.

B.TECH.

Theory Examination (Semester-IV) 2015-16

CHEMICAL REACTION ENGINEERING-I

Time: 3 Hours Max. Marks: 100

Note: Attempt all Sections.

Section-A

- OTES
- 1. Attempt all parts. Write answer of each part in short.

 $(2 \times 10 = 20)$

- (a) Define Elementary & Non-elementary reactions.
- (b) Define Series & Parallel reactions.
- (c) Define molecularity and order of reaction.
- (d) Define selectivity and yield of reaction.
- (e) Define Single & Multiple reactions.
- (f) Define rate of reaction.
- (g) Define space time and space velocity.

P.T.O.

- (h) Define Exit age distribution.
- (i) Give the design equation of PFR.
- (j) Define expansion factor in a variable volume reactor

Section-B

2. Attempt any five questions from this section. $[10 \times 5 = 50]$

- (a) (i) For the elementary reactions in series $A \rightarrow R \rightarrow S$, $k_1 = k_2$, at t=0, $C_A = C_{A0}$, $C_{R0} = C_{S0} = 0$, find the maximum concentration of R and when it is reached.
 - (ii) Liquid A decomposes by second order kinetics and in a batch reactor 60% of A is converted in 15 min. How much time would it take to reach 90% conversion?
- (b) (i) For the decomposition $A \rightarrow R$, $C_{A0} = 1 \text{mol/litre}$, in a batch reactor, conversion is 75% after 1 hour. Find a rate equation to represent this kinetics.
 - (ii) A homogeneous liquid phase reaction A→R, -r_A=k C_A² takes place with 50% conversion in a mixed reactor, what will be the conversion if the original reactor is replaced by a plug flow reactor of equal size, all else remaining unchanged?

(2) P.T.O. WWW.UPTUNOTES.COM

- (c) (i) Derive the design equation for Mixed flow reactor.
 - (ii) A gaseous feed of pure A (1 mol/l) enters a mixed flow reactor (2 litres) and reacts as follows: $2A \rightarrow R$, $-r_A = 0.05 \ C_A^2 \ \text{mol/l.sec}$. Find what feed rate (1/ min) will give an outlet concentration $C_A = 0.5 \ \text{mol/l}$.
- (d) Discuss the performance and size comparison of Plug flow reactor Vs Mixed flow reactor for first order reaction.
- (e) A gaseous feed of pure A (2mol/liter, 100 mol/min) decomposes to give variety of products in the plug flow reactor. The kinetics of conversion is represented by : A → 2.5 (products), -r_A=.(10 min⁻¹) C_A. Find the expected conversion in 22 liter reactor.
- (f) A liquid reactant stream (1mol/lit) passes through two mixed flow reactors in series. The concentration of A in the exit of the first reactor is 0.5mol/lit. Find the concentration A in the exit of the second reactor. The reaction is second order with respect to A and V₂/V₁=2.
- (g) (i) Show that N Plug Flow Reactors in series with a total volume V give the same conversion as a single PFR of volume V.

(3) P.T.O. WWW.UPTUNOTES.COM

- (ii) A reactor set up consisting of two parallel branches D and E. Branch D has a reactor of volume 80 liters and branch E has a reactor of volume 40 liters. What fraction of feed should go to these branches?
- (h) For the given reactor data, calculate the mean residence time of fluid in the vessel t, and find the exit age distribution E.

Time t, min	0	5	10	15	20	25	30	35
C _{pulse} gm/l	0	3	5	5	4	2	1	0

Section-C

Note: Attempt any two parts of the following:

 $(15 \times 2 = 30)$

- **3.** Explain C, E and F curves for Non-ideal flow.
- **4.** Derive the expression $X_A = C_p \Delta T/(-\Delta Hr)$ for an Adiabatic operation.
- 5. A stream of pure gaseous reactant A with initial concentration 660 m mol/l enter into a plug flow reactor at a 540 m mol / l min molar flow rate and polymerizes as per reaction $3A\rightarrow R$, $-r_A = 54 C_A \text{ m mol/l min}$. How large a reactor is required to lower the concentration of A in the exit stream $C_{Af} = 330 \text{ m mol/l}$?

(4) P.T.O. WWW.UPTUNOTES.COM